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Abstract-The present paper is concerned with the effective (or mean-field) response to a non-stochastic
source in heterogeneous media. A self-consistent method is proposed which is analogous to the well known
CPA. It permits to determine the non-locality of effective properties or, if the Fourier transforms are
considered, their dependence on the wave vector k. The method is applied to the electrostatic field in a
heterogeneous body consisting of nearly spherical grains and an equation determining the effective
dielectricity is obtained. The results are also valid for other parameters which are mathematically equivalent,
like conductivity and permeability. Numerical computations are carried out for a two-component mixture.
They show that in strongly heterogeneous media a non-locality of very long range can occur.

I. INTRODUCTION
During the last decade considerable attention has been paid to the study of heterogeneous media,
e.g. [1, 2]. By a heterogeneous medium we understand a material whose properties are random
functions of position. In this paper we are dealing with a field u(r) related to certain sources p(r)
by means of a linear equation

Lu(r) = p(r) (1.1)

where the linear operator L contains stochastically varying material parameters c(r) which give
rise to a random space dependence. In the special case of electrostatics u(r) and p(t) are the
potential and the charge density, respectively and eqn (1.1) takes the form

a aL =--. e(r)-at at (1.2)

where E is the dielectric parameter.
In order to describe the macroscopic behaviour of the considered heterogeneous body, we do

not need the field u(t) itself, which exhibits random fluctuations, but rather some of its averages.
In the simplest case we may ask for the mean field (u (r». The average has to be understood as an
ensemble average over many samples which are produced in the same manufacturing process,
but exhibit different fluctuations.

In general, the source distribution p may also be random. But in the present paper we shall
confine ourselves to the special case of non-stochastic sources being the same for all samples

p = (p). (1.3)

This has been done in the majority of papers on this subject. A subsequent paper will be devoted
to the problem of random sources in heterogeneous media.

Our aim is to derive an equation determining the mean field (u(t». We start with the formal
solution of eqn (1.1)

u(r) = Jdr' g... (r, r')p(r') (1.4)

where g.. is the stochastic Green function of the operator L belonging to a single sample. In order
to define the Green function unambiguously, boundary conditions are in need. Complications
caused by boundary effects can be eluded in considering an infinite body in connection with a
field vanishing at infinity. Accordingly we choose that retarded Green function which tends to
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zero at large distances. Taking into account (1.3) and the definition

(g,,) == g

we obtain from (1.4)

(u (r» = Jdr' g(r, r')p(r').

It is useful to associate an operator L eff to the average-or effective-Green function by

Leffg(r, r') = 8(r - r').

(1.5)

(1.6)

(1.7)

Applying the effective operator Leff to (1.6), we get the desired equation for the mean field in a
formal manner

(1.8)

If statistical homogeneity is assumed, as will be done in the following, the effective Green
function depends only on the difference coordinate

g=g(r-r'). (1.9)

Consequently, a Fourier transformation of the space variables reduces the convolution integral
(1.6) to a simple product

(u(k» = g(k)p(k) (1.10)

where k is the wave vector. For the sake of clarity, quantities in the Fourier space are marked by
a tilda. In this representation the transition to (1.8) is easily achieved by an ordinary division

(1.11)

Turning again to electrostatics, we can introduce the notion of effective dielectricity

(1.12)

which relates the mean electric field (E) to the mean electric displacement (D) according to

(1.13)

Since, in general, i eff turns out to be a function of the wave vector k, the transformation into the
physical space furnishes non-local relations

(D(r» = fdr' Eeff(r - r')(E(r'»

Leff(u(r» = - aa
r

· fdr' Eeff(r-r') a~' (u(r'». (1.14)

This non-locality will be calculated by means of a self-consistent method which is appropriate to
the case of strongly heterogeneous materials when perturbation techniques fail.

2. SELF-CONSISTENT APPROACH TO Lelf

Let us consider a medium consisting of a great number of grains which are distributed at
random with respect to position, size and material properties. Inside the grain No. i the material
parameter c(r) takes the constant value Ci. Then, at an arbitrary point, it may be written as

(2.1)
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Here (Jj is a step function defined by

(J.(r) ={I inside t~e jth grain 2: (J.(r) =1.
• 0 otherWIse 'i I
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(2.2)

The second equation expresses the fact that each point r belongs to exactly one of the grains.
Furthermore, we suppose that correlations between the properties of adjacent grains can be
disregarded.

If the non-random source takes a harmonic form

it follows from (1.11) that

p(r)=po exp ik. r

p(k') = Poc5(k - k')

(u(r») = Uo exp jk . r

(2.3)

(2.4)

Comparison with (1.8) shows that application of the operator L elf to a harmonic function amounts
to multiplication with the c-number Le«<k). There is no loss of generality, if we restrict our
considerations to the special source term (2.3), since an arbitrary source distribution can always
be generated by a superposition of harmonic functions. Because of the linearity of eqns (1.1) and
(1.8) the corresponding fields u and (u) are easily obtained from the superposition of those
belonging to harmonic sources.

In order to determine L efJ, the stochastic operator L will be decomposed into a homogeneous
part L o and deviations Li due to the ith grain

(2.5)

L o is required to give the same results as L efJ, if applied to the harmonic function (u) (2.4), i.e.

(2.6)

whereas L j depends only on the properties of the jth grain and the effective properties contained
in L o• Similarly, we split up the stochastic field u into the mean field (u) and fluctuations Uj due
to the presence of the ith grain

u =(u)+ 2: Uj
j

where the fluctuation Uj may be defined by the equation

LUi = - L;(u).

(2.7)

(2.8)

Up to this state the set of eqns (2.5H2.8) is exactly equivalent to the basic eqn (1.1). But to find a
solution of eqn (2.8) is, of course, as impossible as to solve eqn (1.1). So we are forced to
introduce a decisive approximation.

Rewriting (2.8) in the form

(2.9)

we drop the last term on the right hand side which describes the influence of the other grains on
the field fluctuation produced by the ith grain. The remaining equation
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(Lo+L;)Ui = -L,(u) (2.10)
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(Lo+ Li)(Ui +(U) = Lo(u) = p

can eventually be solved for simple grain shapes, especially for spheres. This approximation
means that, in order to calculate Ui, the ith grain is taken into account exactly, whereas all the
other grains are replaced by a homogeneous material described by the operator L o• But,
according to eqn (2.6), Lo is related to the unknown effective quantity ietrCk) which, therefore,
will be contained in the solution of (2.10). Inserting this solution into eqn (2.7) and performing the
ensemble average, we obtain the relation

(2.11)

which may serve as an implicit equation for the unknown effective quantity ietrCk). A Fourier
transformation leads us to the effective operator Leff in the ordinary space.

The validity of the self-consistent method proposed in this section clearly depends on the
special problem being considered, and on the choice of the decomposition (2.5). This
approximation will be applicable only if there is a natural choice for the operators Lo and L i •

Certainly, a rigorous justification for neglecting the coupling terms in eqn (2.9) cannot be given.
We can only refer to similar self-consistent approaches which have been applied with more or
less success in different fields of physics, and to eventual experimental verifications. The
approximation scheme outlined above generalizes the basic ideas developed in the case of
homogeneous mean fields [3]. Moreover, it is completely analogous to the so-called CPA
(coherent potential approximation) which has been used successfully in the theory of disordered
alloys[4]. There, the effective Hamiltonian and properties like the density of states are obtained
in good agreement with experimental data. The main difference in comparison with the present
problem consists in the discreteness and the regularity of the lattice whereas we are concerned
with continuous space coordinates and random geometries.

In the frame of the self-consistent approximation outlined above correlations between the
material properties of neighbouring grains cannot be taken into account. Consequently, the
results are presumed reliable, if at all, only for materials without such correlations.

Further, the results of this approximation can be shown to agree with the perturbation
treatment up to third order in the variation of material parameters provided that the geometry of
the grains is treated exactly and that there are no correlations as mentioned above (see Appendix).

3. APPLICATION TO ELECTROSTATICS

In the case of electrostatics (1.2), it seems reasonable to choose the operator Lo in the same
form as the operator (1.2), i.e.

a aL ---'E
0- ar oar (3.1)

where Eo is independent of position because of the required homogeneity of L o• According to
eqns (2.3) and (2.4) the mean field and the charge density are chosen as harmonic functions of
position. Then the requirement of eqn (2.6) together with the definition (1.12) leads to

(3.2)

With the aid of (2.1) and (2.2), L can be written as

a a a aL= --. e(r)-= --. ~ E·f)·(r)-ar ar ar i " ar

= Lo- aa .~ (Ei - EetrCk»8i (r) aa .
r i r

(3.3)
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This expression suggests the following definition of L i

L i == _1- . (E' - E~k»)8.(r)1-
8r' I 8r'
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(3.4)

But it must be emphasized that the requirements made in section 2 do not determine the
decomposition of L into Lo and L i uniquely. Although the expressions (3.1), (3.2) and (3.4) fulfill
these requirements, different, but more complicated decompositions would be possible.

If we insert the settlements (3.2), (3.4) into eqn (2.10) it takes the form

or

8 } 8 {() } 8 - 8 ( ) ik.r (35)8r . {Eeff +(Ej - Eeff)O/(r) 8r U +Uj =8r . Eeff 8r U =-po e . .

The solution Uj must tend to zero at great distances from the ith grain. Since only in the case of
spherical grains a relatively simple solution can be expected, we restrict ourselves to the case that
all grains can be approximated by spheres, similarly, for example, to the approximation of
Wigner-Seitz-cells by spheres which is frequently used in solid state physics. It is perhaps
possible to justify this approximation from the fact that spheres represent a certain average grain
shape. Obviously, the approximation scheme allows dealing with other grain shapes, but this
would certainly demand numerical methods.

If we single out the ith grain with radius R; and attach the origin of coordinates to its center
(see Fig. 1), the step function Oi (2.2) reads

(3.6)

Let us split up Uj into two parts

Then eqn (3.5) becomes

(3.7)

~U'i=O for (3.8)

At the surface r = Rh where the dielectric parameter in eqn (3.5) suffers a jump, the potential as
well as the normal component of the dielectric displacement have to be continuous

{(U)+ Ui}ext = {(u)+ ulhnt

Eeff :r {(u)+ U;}ext = Ei :r {(u)+ uihnt. (3.9)

The labels ext and int indicate the exterior and interior sides of the spherical surface,
respectively. Equations (3.9) lead together with eqn (3.7) to the following boundary conditions for
U'I

'I -'1 Ej - Ed ik.rUiext- Uiint- uo--e
Ei

_ au;1 au;1Eeff- =E/- .
ar ext 8r int

(3.10)

In consequence of the spherical boundary it is convenient to expand the fields (u) and UI into
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Fig. I.

series of spherical harmonics. The mean field then becomes

(3.11)

with

whereas the solution of (3.8) can be written as

(3.12)

This expression takes into account the rotational symmetry with respect to the axis k as well as
the fact that u: has to remain finite in the origin and to vanish in the limit r~ 00.

The boundary conditions (3.1) lead to a set of equations for the coefficients A, and B,

whose solution reads

A E; I B (Ei - Eeff)l TT (kR )
'=-Eeff'I+1 ,= (l+l)Eeff+lEjUOVI j.

(3.13)

(3.14)

Equation (3.7), (3.12) and (3.14) represent the solution u,(r) of eqn (3.5) for a grain centered at the
origin. In order to obtain the solution ut(r, r,) for an arbitrary grain position rio we only have to
replace the coordinate r in Ul (r) by the difference vector r - rl, and to multiply it by a factor
expk. r

(3.15)

(3.16)

This additional factor arises from the exponential term on the right hand side of eqn (3.5) which
can be split up into two factors exp ik. r = exp ik. (r - rl) exp it. rio

Now, substituting the results for Ui into eqn (2.11) and ensemble averaging yields an implicit
equation on Eeff. The ensemble is characterized by a probability distribution for the positions r"
the dielectricity constants E" and the sizes Ri • Because of statistical homogeneity all positions rj
of a grain have equal probability independently of the other stochastic parameters E.. Ri • Thus,
taking into account eqn (3.15), we can perform the position average of Ui separately to obtain

-r. 1 fd ( ) 1 fd ik r ( )Ui ,= V rj u, r, rj = V ri e . lUi r - ri

eik.rf
= V dr' e-ik

.
r

' ur(r').
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(3.17)

In order to express the remaining average with respect to EI and Rio we introduce the mean
number N. of grains with determinate values Ea and Ra or, in other terms, the probability
Pa = Na/N(N = I Na) for an arbitrary grain to be of the kind a. With help of these quantities we

a

finally obtain

(~UI) = elk.r ~ ~ f dr' e-Ik ... Ua (r')

= ~ elk .•~ pa f dr' e-Ik.r·ua(r') = O.

Let us recall that the field contribution ua(r) belongs to a grain of the kind a (i.e. Ea , Ra) located at
the origin.

4. EVALUATION OF EFFECTIVE DIELECTRICITY

In view of the following calculations, it is convenient to replace the self-consistency condition
(2.11) by its derivative

(4.1)

Conformely with eqn (3.17), the ensemble average can be written as

~ Pafdr e-Ik.rik . aa
r

Ua = O. (4.2)

~Pa{euoEa-ieffVa+f dre-Ik·'ik.aU~+f dre-Ik·'ik.aU~}=o (4.3)
a Ea r<R" ar r>R. ar

where Va = 41TRa
3/3 is the volume of a grain of kind a. The calculation of the second term on the

left hand side may be performed by using eqn (3.8) for UI, to obtain

o=f dre-ik.r~u~= tfi dsau~1 e-Ik .•
r<R" 'j-f ar int

r=RQ

+f d 'k au~ -Ik .•rl '-e .
r<R" ar

(4.4)

The surface integral can be treated with the help of the expansions (3.11), (3.12). On account of
the orthogonality of Legendre polynomials, it follows

f d 'k au~ -Ik'r tpdsau~1 -Ik.. 4 ,D ~ IBI U*(kR)rl '-e =- - e =- 1Tna £J-- I
r<R" ar ar int I 21 +1 a

and, analogously, for the exterior region

(4.5)

Thus, eqn (4.3) takes the form



180 G. DIENER and F. KAsEBERG

where in the last equation the expression (3.14) for the coefficients has been used. If we introduce
the abbreviations

S(X y)==~ 1(1+1) .IU/(XW=~(2/+1)(l+1)/(J/+(l/2)(X»2
, I~l I +1+ Iy 21 +I 1=1 1+ 1+ Iy 2x

Q(x, y) == (I-~) [I +3(y -I) S(;~Y)],

the implicit equation governing the unknown quantity Eelf can finally be written as

(4.8)

(4.9)

(4.10)

Here, Va denotes the volume part occupied by grains of kind a. Obviously, an approximative
replacement of the infinite sum S(x, y) by a closed function is desirable. This can be achieved
with the help of the approximation

1(1 + 1) 2 [1(1 + 1) + I 1- y (2 - y 1 +)J
I + 1+ Iy"'" 1+ y 21 + 1 41+ y 2+ Y . 21 + 1 1 . (4.11)

This relation is exact for I = I as well as for y =0, 1, +00 and its maximal error can be shown to
amount about 3 per mill. If we employ this approximation, the sum involved in S (4.8) can be
carried out by means of the following exact relations (see [5])

~ 1u'2/,(+X)1
12

= 211' ~ (21 +1) Jf+(l/2)(X) = I
1-0 X 1=0

~ I I 1 [Sin 2x . J 26 U/(x) 2 =2 ""2X+cos 2x + 2xSI(2x) == I +2x a(x)

~ IUr(x)1
2
= si(2x)==1+x2/3(x).

1=0 21 +1 2x

The functions a, /3 and y

are introduced for convenience. Eqns (4.11)-(4.13) then lead to

(4.12)

(4.13)

S(x, y)=2(y 1+ 1)~ [(21 + 1)- (l + y~r2+ y)' 21 ~ 1-:~ :J I~~t

I [ 6y 1- YJ 12

-2(y + 1) 1- (l + y)(2+ y) -1 + Y IUo(x)

x2
2

(l + y)2(2+ y) [2a + y(3a -3/3 + y)+ y (a - y)]. (4.14)

This approximation enables us to compute Emr(k) from (4.10) for an arbitrary composition of the
mixture.

Especially in the limiting case of a homogeneous mean field /eRa -+ 0 the exact expression (4.8)
as well as the approximation (4.14) reduce to

lim S(x, y) = _2_
x....o ---xr- 3(2 +y)

Q(O ) = 3(y - 1)
,y Y+2

(4.15)
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~ Ea - Eeff
£.i Va 2·

a Ea + Eeff (
Ea - E~ff ) = 0,

Ea +2Eeif
kRa =0 (4.16)

in agreement with the result of familiar self-consistent treatments for homogeneous fields [3].
Here the bracket denotes the volume average.

In the other limit of extremely inhomogeneous fields kRa ~OO, expression (4.14) leads to the
exact result known from literature [6]

1
Q(x = 00, y) = 1- Y

~ (Eeff) 1 (1)£.i Va 1-- = 0 or -.- = - ,kRa ~OO.
a Ea Eeff E

(4.17)

5. NUMERICAL RESULTS AND DISCUSSION

In Fig. 2 the function Q(x, y) is plotted. Numerical calculations of Eeff have been carried out
for a two-component mixture. All grains are assumed to be of equal size Ra = R. Consequently,
the sum over a reduces to the sum over the two components where their volume parts VI and V2

appear as weighing factors. Two special volume ratios of the mixture 0·5: O'5 and 0·8: O'2 have
been chosen. These two cases reveal characteristic peculiarities in strongly heterogeneous media
in which the two dielectric parameters are extremely different from one another (E2 ~ EI).

To begin with the limiting case kR = 0, we readily see from (4.16) that, for strong
heterogeneity,

(5.1)

holds. Consequently, as long as the second component possessing the greater dielectric
parameter E2 covers more than one third of the body, Eeff takes a value of the order of magnitude
E2. As soon as this relative volume V2 decreases below one third, Eeff suffers a rapid transition to
the order of magnitude of the smaller dielectricity EI. This behaviour is analogous to the
percolation phenomena studied in disordered alloys[7].

In the opposite limiting case kR~oo we deduce from (4.17) for strong heterogeneity

(5.2)

Fig. 2.
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We see that in this limit the effective dielectricity is of the order of magnitude of the smaller
dielectric parameter El whatever the relative volumes are (except extremely small VI)'
Comparison of the two limiting cases suggests that for vz < 1/3 and independently of kR the
effective dielectricity i eff remains within the range of EI. On the contrary, for Vz> 1/3, i eff as a
function of kR varies between the orders of magnitude EI and Ez, As is seen from Fig. 3, this
transition takes place at small kR ~ 1. Indeed, in the strongly heterogeneous case the
i eff - kR -diagram shows a high peak about kR = O. Its width turns out to be of the order
kR = O(7Y(Et!EzVI». Therefore, if we consider the effective dielectricity i eff of a strongly
heterogeneous body as a function of wave length A = 21T/k and if we diminish A, starting from
infinity, the decrease of i eff from the order of Ez to that of E I will appear at wavelengths which are
much greater than the grain radius. The peak in the Fourier space necessarily gives rise to a long
range of the non-locality within the physical space. In fact, Eetr<r) vanishes only at distances of the
order r > O·15RY(VtEz/EI). This can considerably exceed the correlation length being of the order
of R.

As it is to be expected, these effects observed at a mixture ratio of O'5: O·5 occur in the case of
kR
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a mixture ratio of 0·2: 0·8 only if the greater value of E belongs to the prevailing component (see
Fig. 4).

The long-range non-locality stated above looks very strange. This pecularity depends on the
assumptions about the source distribution. If we admit random sources whose fluctuations are
correlated with those of the material properties, the effective behaviour can considerably differ
from the above results. This also holds for the range of nonlocality. A forthcoming paper will be
devoted to these effects.

Obviously, the results of the present paper can be carried over without any change to other
properties of composites such as electric and heat conductivity, diffusion, permeability, because
these quantities are governed by the same laws (1.1), (1.2) as we have started from. In the case of
elasticity the tensorial character involves some computational difficulties.

At the end the reader must be warned of ascribing general validity to our results. As must be
noticed, the effective behaviour of a heterogeneous body does not only depend on the ratio of its
components but also on their morphology. In this paper all the components have been treated on
the same footing. Therefore, we expect the achieved results to describe only the behaviour of
such heterogeneous bodies in which, disregarding different volume parts, all the components are
of similar geometry. A counter-example is a connected matrix with insulated inclusions of
different material. Certainly, such a heterogeneous medium demands other methods for
calculating its effective behaviour. However, the restriction to nearly spherical grains is not
inherent to the general procedure, and could be removed with an appropriate computational
effort.
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APPENDIX
Comparison of the self-consistent approach with a perturbation treatment

The effective operator Leff is connected with the stochastic operator L by the operator relation

Decomposing L according to eqn (2.5)

L=Lo+L'L'="2,L"

we expand expression (AI) into powers of L' to obtain

0= (Le,,- Lo)(u)

={(L')-(L'goL')+ (L')go(L') +(L'goL'goL')

- (L' goL ')go(L') - (L')go(L' goL') +(L')go(L')go(L') +.. .}(u)

(AI)

(A2)

(A3)

up to third order terms. The Green operator go represents the inversion of Loand is supposed to be known. Transporting the
first term of expansion (A3) to the other side of the equation, we can immediatly see that, although L' being of first order, its
average (L ') is only a second order term. This means that some of the terms written down in (A3) are of higher than third
order. If we omit these contributions, eqn (A3) simplifies to

{(L ') - (L' goL ') +(L' goL'goL ') +fourth order} . (u)

On the other hand, the self-consistency condition (2.11) can be transformed into

(A4)

(A5)
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where eqn (2.10) is used. Interserting the solution for u, in an expanded form

u.=-goL,«u)+ud
= -go(L, - L,goL. +.. .)(u),

we can rewrite (AS) as

(A6)

(A7)

Acomparison with the perturbation series (A4) shows a complete accordance of the first order terms. The second order terms
differ by

(AS)

Turning to the special case of electrostatics (3.2), (3.4), we can easily show this difference to be of fourth order only, provided
that the dielectric parameter outside the ith grain is not correlated to the properties of this grain. The last expression in (A6)
contains a two point average

{(r, r') =\~ (E, - i.,,)/J, (r)(Ej - i.,,)/Jj(r'»)'

With the aid of eqns (2.1), (2.2), it may be written in different formst

{(r, r') = \~ (E, - i.,,)/J, (r)/Jf(r')[E(r') - i.,,])

=(~(EI - i.,,)/J,(r)[I- /J,(r')]. [E(r') - i.,,]).

In consequence of the above assumption, the average of E(r') can be performed independently of the ith grain

{(r, r') =(~(EI - i.,,)/JI(r)[I- /J,(r')] )(E - i.,,).

Repeating the same arguments with respect to the other point r, we obtain

{(r, r') = \~ (EI - i.,,)/J;(r)/Jj(r') )(E - i.,,)

= (E(r) - i.,,) ~ [1- /Jj(r)J/J;(r') )(E - i.,,)

= (E - i.,,),(~ [1- /Jj(r)]/Jj (r')).

(A9)

(AlO)

(All)

(AI2)

According to the discussion after (A3), (L ')(u) and, therefore, (E - i.,,) are only of second order. Thus, the expressions (AI2)
and (AS) are only of fourth order, as affirmed above.

An analogous reasoning can be applied to the difference of the third order terms in (A4) and (A7) which turns out to be
also of fourth order.

It results that, for weak heterogeneities, the self-consistent and the perturbation treatments are in accordance up to third
order, provided that there is no correlation between the material properties of different grains.

tMathematical difficulties which could arise from the step function are physically irrelevant. They can always be avoided
by imagining the steps as rapid, but continuous transitions.


